home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Turnbull China Bikeride
/
Turnbull China Bikeride - Disc 2.iso
/
STUTTGART
/
LANG
/
SCHEME
/
GNU
/
SCM4E1
/
!Scm
/
slib
/
array
< prev
next >
Wrap
Text File
|
1993-11-01
|
8KB
|
280 lines
;;;;"array.scm" Arrays for Scheme
; Copyright (C) 1993 Alan Bawden
;
; Permission to copy this software, to redistribute it, and to use it
; for any purpose is granted, subject to the following restrictions and
; understandings.
;
; 1. Any copy made of this software must include this copyright notice
; in full.
;
; 2. Users of this software agree to make their best efforts (a) to
; return to me any improvements or extensions that they make, so that
; these may be included in future releases; and (b) to inform me of
; noteworthy uses of this software.
;
; 3. I have made no warrantee or representation that the operation of
; this software will be error-free, and I am under no obligation to
; provide any services, by way of maintenance, update, or otherwise.
;
; 4. In conjunction with products arising from the use of this material,
; there shall be no use of my name in any advertising, promotional, or
; sales literature without prior written consent in each case.
;
; Alan Bawden
; MIT Room NE43-510
; 545 Tech. Sq.
; Cambridge, MA 02139
; Alan@LCS.MIT.EDU
(require 'record)
;(declare (usual-integrations))
(define array:rtd
(make-record-type "Array"
'(indexer ; Must be a -linear- function!
shape ; Inclusive bounds: ((lower upper) ...)
vector ; The actual contents
)))
(define array:indexer (record-accessor array:rtd 'indexer))
(define array-shape (record-accessor array:rtd 'shape))
(define array:vector (record-accessor array:rtd 'vector))
(define array? (record-predicate array:rtd))
(define (array-rank obj)
(if (array? obj) (length (array-shape obj)) 0))
(define (array-dimensions ra)
(map (lambda (ind) (if (zero? (car ind)) (cadr ind) ind))
(array-shape ra)))
(define array:construct
(record-constructor array:rtd '(shape vector indexer)))
(define (array:compute-shape specs)
(map (lambda (spec)
(cond ((and (integer? spec)
(< 0 spec))
(list 0 (- spec 1)))
((and (pair? spec)
(pair? (cdr spec))
(null? (cddr spec))
(integer? (car spec))
(integer? (cadr spec))
(<= (car spec) (cadr spec)))
spec)
(else (slib:error "array: Bad array dimension: " spec))))
specs))
(define (make-array initial-value . specs)
(let ((shape (array:compute-shape specs)))
(let loop ((size 1)
(indexer (lambda () 0))
(l (reverse shape)))
(if (null? l)
(array:construct shape
(make-vector size initial-value)
(array:optimize-linear-function indexer shape))
(loop (* size (+ 1 (- (cadar l) (caar l))))
(lambda (first-index . rest-of-indices)
(+ (* size (- first-index (caar l)))
(apply indexer rest-of-indices)))
(cdr l))))))
(define (make-shared-array array mapping . specs)
(let ((new-shape (array:compute-shape specs))
(old-indexer (array:indexer array)))
(let check ((indices '())
(bounds (reverse new-shape)))
(cond ((null? bounds)
(array:check-bounds array (apply mapping indices)))
(else
(check (cons (caar bounds) indices) (cdr bounds))
(check (cons (cadar bounds) indices) (cdr bounds)))))
(array:construct new-shape
(array:vector array)
(array:optimize-linear-function
(lambda indices
(apply old-indexer (apply mapping indices)))
new-shape))))
(define (array:in-bounds? array indices)
(let loop ((indices indices)
(shape (array-shape array)))
(if (null? indices)
(null? shape)
(let ((index (car indices)))
(and (not (null? shape))
(integer? index)
(<= (caar shape) index (cadar shape))
(loop (cdr indices) (cdr shape)))))))
(define (array:check-bounds array indices)
(or (array:in-bounds? array indices)
(slib:error "array: Bad indices for " array indices)))
(define (array-ref array . indices)
(array:check-bounds array indices)
(vector-ref (array:vector array)
(apply (array:indexer array) indices)))
(define (array-set! array new-value . indices)
(array:check-bounds array indices)
(vector-set! (array:vector array)
(apply (array:indexer array) indices)
new-value))
(define (array-in-bounds? array . indices)
(array:in-bounds? array indices))
; Fast versions of ARRAY-REF and ARRAY-SET! that do no error checking,
; and don't cons intermediate lists of indices:
(define (array-1d-ref a i0)
(vector-ref (array:vector a) ((array:indexer a) i0)))
(define (array-2d-ref a i0 i1)
(vector-ref (array:vector a) ((array:indexer a) i0 i1)))
(define (array-3d-ref a i0 i1 i2)
(vector-ref (array:vector a) ((array:indexer a) i0 i1 i2)))
(define (array-1d-set! a v i0)
(vector-set! (array:vector a) ((array:indexer a) i0) v))
(define (array-2d-set! a v i0 i1)
(vector-set! (array:vector a) ((array:indexer a) i0 i1) v))
(define (array-3d-set! a v i0 i1 i2)
(vector-set! (array:vector a) ((array:indexer a) i0 i1 i2) v))
; STOP! Do not read beyond this point on your first reading of
; this code -- you should simply assume that the rest of this file
; contains only the following single definition:
;
; (define (array:optimize-linear-function f l) f)
;
; Of course everything would be pretty inefficient if this were really the
; case, but it isn't. The following code takes advantage of the fact that
; you can learn everything there is to know from a linear function by
; simply probing around in its domain and observing its values -- then a
; more efficient equivalent can be constructed.
(define (array:optimize-linear-function f l)
(let ((d (length l)))
(cond
((= d 0)
(array:0d-c (f)))
((= d 1)
(let ((c (f 0)))
(array:1d-c0 c (- (f 1) c))))
((= d 2)
(let ((c (f 0 0)))
(array:2d-c01 c (- (f 1 0) c) (- (f 0 1) c))))
((= d 3)
(let ((c (f 0 0 0)))
(array:3d-c012 c (- (f 1 0 0) c) (- (f 0 1 0) c) (- (f 0 0 1) c))))
(else
(let* ((v (map (lambda (x) 0) l))
(c (apply f v)))
(let loop ((p v)
(old-val c)
(coefs '()))
(cond ((null? p)
(array:Nd-c* c (reverse coefs)))
(else
(set-car! p 1)
(let ((new-val (apply f v)))
(loop (cdr p)
new-val
(cons (- new-val old-val) coefs)))))))))))
; 0D cases:
(define (array:0d-c c)
(lambda () c))
; 1D cases:
(define (array:1d-c c)
(lambda (i0) (+ c i0)))
(define (array:1d-0 n0)
(cond ((= 1 n0) +)
(else (lambda (i0) (* n0 i0)))))
(define (array:1d-c0 c n0)
(cond ((= 0 c) (array:1d-0 n0))
((= 1 n0) (array:1d-c c))
(else (lambda (i0) (+ c (* n0 i0))))))
; 2D cases:
(define (array:2d-0 n0)
(lambda (i0 i1) (+ (* n0 i0) i1)))
(define (array:2d-1 n1)
(lambda (i0 i1) (+ i0 (* n1 i1))))
(define (array:2d-c0 c n0)
(lambda (i0 i1) (+ c (* n0 i0) i1)))
(define (array:2d-c1 c n1)
(lambda (i0 i1) (+ c i0 (* n1 i1))))
(define (array:2d-01 n0 n1)
(cond ((= 1 n0) (array:2d-1 n1))
((= 1 n1) (array:2d-0 n0))
(else (lambda (i0 i1) (+ (* n0 i0) (* n1 i1))))))
(define (array:2d-c01 c n0 n1)
(cond ((= 0 c) (array:2d-01 n0 n1))
((= 1 n0) (array:2d-c1 c n1))
((= 1 n1) (array:2d-c0 c n0))
(else (lambda (i0 i1) (+ c (* n0 i0) (* n1 i1))))))
; 3D cases:
(define (array:3d-01 n0 n1)
(lambda (i0 i1 i2) (+ (* n0 i0) (* n1 i1) i2)))
(define (array:3d-02 n0 n2)
(lambda (i0 i1 i2) (+ (* n0 i0) i1 (* n2 i2))))
(define (array:3d-12 n1 n2)
(lambda (i0 i1 i2) (+ i0 (* n1 i1) (* n2 i2))))
(define (array:3d-c12 c n1 n2)
(lambda (i0 i1 i2) (+ c i0 (* n1 i1) (* n2 i2))))
(define (array:3d-c02 c n0 n2)
(lambda (i0 i1 i2) (+ c (* n0 i0) i1 (* n2 i2))))
(define (array:3d-c01 c n0 n1)
(lambda (i0 i1 i2) (+ c (* n0 i0) (* n1 i1) i2)))
(define (array:3d-012 n0 n1 n2)
(cond ((= 1 n0) (array:3d-12 n1 n2))
((= 1 n1) (array:3d-02 n0 n2))
((= 1 n2) (array:3d-01 n0 n1))
(else (lambda (i0 i1 i2) (+ (* n0 i0) (* n1 i1) (* n2 i2))))))
(define (array:3d-c012 c n0 n1 n2)
(cond ((= 0 c) (array:3d-012 n0 n1 n2))
((= 1 n0) (array:3d-c12 c n1 n2))
((= 1 n1) (array:3d-c02 c n0 n2))
((= 1 n2) (array:3d-c01 c n0 n1))
(else (lambda (i0 i1 i2) (+ c (* n0 i0) (* n1 i1) (* n2 i2))))))
; ND cases:
(define (array:Nd-* coefs)
(lambda indices (apply + (map * coefs indices))))
(define (array:Nd-c* c coefs)
(cond ((= 0 c) (array:Nd-* coefs))
(else (lambda indices (apply + c (map * coefs indices))))))